# THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS 

## MMATH5220 Complex Analysis and Its Applications 2014-2015

Assignment 1

- Due date: 28 Jan, 2015
- Remember to write down your name and student number

1. For $n \geq 1$, prove that
(a) $1+z+z^{2}+\cdots+z^{n}=\frac{1-z^{n+1}}{1-z}$, if $z \neq 1$;
(b) $1+\cos \theta+\cos 2 \theta+\cdots+\cos n \theta=\frac{1}{2}+\frac{\sin \left(n+\frac{1}{2}\right) \theta}{2 \sin \frac{\theta}{2}}$, if $\theta$ is not a multiple of $2 \pi$.
2. Let $z_{1}, z_{2} \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$, is it true that $\log \left(z_{1} z_{2}\right)=\log \left(z_{1}\right)+\log \left(z_{2}\right)$ ? Please explain your answer.
3. Suppose $T(z)=\frac{a z+b}{c z+d}$, with $a d-b c \neq 0$. Show that
(a) $\lim _{z \rightarrow \infty} T(z)=\infty$ if $c=0$;
(b) $\lim _{z \rightarrow \infty} T(z)=\frac{a}{c}$ and $\lim _{z \rightarrow-d / c} T(z)=\infty$ if $c \neq 0$.
4. If $\lim _{z \rightarrow z_{0}} f(z)=0$ and there exists a positive number $M$ such that $|g(z)| \leq M$ for all $z$ in some neighborhood of $z_{0}$, prove that $\lim _{z \rightarrow z_{0}} f(z) g(z)=0$.
5. Suppose that $f(z)=\bar{z}$. By considering the Cauchy-Riemann equations, show that $f^{\prime}(z)$ does not exist at any point.
6. Prove that if $f$ and $\bar{f}$ are both analytic on a domain $D$, then $f$ is constant in $D$.
