THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMATH5220 Complex Analysis and Its Applications 2014-2015 Assignment 1

- Due date: 28 Jan, 2015
- Remember to write down your name and student number
- 1. For $n \ge 1$, prove that
 - (a) $1 + z + z^2 + \dots + z^n = \frac{1 z^{n+1}}{1 z}$, if $z \neq 1$; (b) $1 + \cos \theta + \cos 2\theta + \dots + \cos n\theta = \frac{1}{2} + \frac{\sin(n + \frac{1}{2})\theta}{2\sin\frac{\theta}{2}}$, if θ is not a multiple of 2π .
- 2. Let $z_1, z_2 \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$, is it true that $\text{Log}(z_1 z_2) = \text{Log}(z_1) + \text{Log}(z_2)$? Please explain your answer.
- 3. Suppose $T(z) = \frac{az+b}{cz+d}$, with $ad bc \neq 0$. Show that
 - (a) $\lim_{z \to \infty} T(z) = \infty$ if c = 0;
 - (b) $\lim_{z \to \infty} T(z) = \frac{a}{c}$ and $\lim_{z \to -d/c} T(z) = \infty$ if $c \neq 0$.
- 4. If $\lim_{z \to z_0} f(z) = 0$ and there exists a positive number M such that $|g(z)| \leq M$ for all z in some neighborhood of z_0 , prove that $\lim_{z \to z_0} f(z)g(z) = 0$.
- 5. Suppose that $f(z) = \overline{z}$. By considering the Cauchy-Riemann equations, show that f'(z) does not exist at any point.
- 6. Prove that if f and \overline{f} are both analytic on a domain D, then f is constant in D.